Structure Reports

Online
ISSN 1600-5368

N-(9H-Fluoren-9-ylidene)- N -(-2-methoxyphenyl)amine

Neil M. Glagovich, ${ }^{\text {a }}$ Elizabeth M. Reed, ${ }^{\text {a }}$ Guy Crundwell, ${ }^{\text {a }}{ }^{\text {* }}$ James B. Updegraff III, ${ }^{\text {b }}$ Matthias Zeller ${ }^{\text {b }}$ and Allen D. Hunter ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663, USA

Correspondence e-mail:
crundwellg@mail.ccsu.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.139$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, alternatively called N -(9 H -fluoren-9-ylidene)-2-methoxyaniline, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}$, was synthesized by the p-toluenesulfonic acid-assisted Schiff base reaction between 9-fluorenone and 2-methoxyaniline. The crystal structure of the title compound has been determined at 100 K .

Comment

The imine functionality has many practical applications in organic synthesis. Imines have been used to produce chiral nitrogen-containing natural products via reaction with allylic titanium compounds (Gao \& Sato, 1995), via enantioselective reductive amination (Chi et al., 2003), via the nucleophilic addition of dialkylzinc reagents (Boezio et al., 2003), and via camphor-derived mercapto chiral auxiliaries (Yang et al., 1994). Our interest in imines involves their use as resolving agents for racemic aldehydes and ketones. Chiral amines will form diastereomeric imines that can be separated to yield enantiomerically pure carbonyl compounds.
The title compound, (I) (Fig. 1), is not chiral, however, and was synthesized to determine what effects ortho substituents will have on imine formation. In comparison with a closely related imine, namely N-(9H-fluoren-9-ylidene)-4-methoxyaniline (Glagovich et al., 2004a), where the methoxy group is para to the imine N atom, the title compound formed in slightly lower yield, but not appreciably so. Large orange crystals of (I) were obtained after column chromatography using a 90:10 (by volume) mixture of hexanes and ethyl acetate.

(I)

The benzene ring bound to the imine N atom bears a methoxy group that is nearly coplanar. To avoid unfavorable steric interactions between H atoms on C 1 and C 19 , the substituent benzene ring makes a dihedral angle of $84.00(2)^{\circ}$ with the 9 H -fluorene-9-imine unit. The $\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 14$ angle of $120.75(11)^{\circ}$ and the $\mathrm{N} 1-\mathrm{C} 9$ bond distance of 1.2746 (16) \AA are in close agreement with the published structures of the two compounds N -(9H-fluoren-9-ylidene)- N -(-4-methoxyphenyl)amine (Glagovich et al., 2004a) and N -9H-fluoren-9-ylidene-3,4-dimethylaniline (Glagovich et al., 2004b).

Received 13 September 2004 Accepted 24 September 2004 Online 16 October 2004

Figure 1
A view of (I) (ORTEP-3; Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

Experimental

In a 50 ml round-bottomed flask equipped with a Hickman still and a reflux condenser were combined 9-fluorenone ($0.367 \mathrm{~g}, 2.04 \mathrm{mmol}$), o-anisidine $(0.502 \mathrm{~g}, 4.08 \mathrm{mmol}), p$-toluenesulfonic acid $(0.0021 \mathrm{~g}$, $10 \mu \mathrm{~mol})$ and toluene $(20 \mathrm{ml})$. The resulting mixture was refluxed for 20 h . After this time, the resulting black solution was concentrated under reduced pressure to produce a black oil. The oil was purified by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 90 \%\right.$ hexanes-ethyl acetate), which yielded 0.462 g of (I) as an orange solid (79.4\%). Analysis: $R_{F} 0.46$ $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 90 \%\right.$ hexanes-ethyl acetate); m.p. 407.8 K ; IR $\left(\mathrm{CHCl}_{3}, v\right.$, cm^{-1}): 3057, 2991, 1656, 1248, 1017, 744; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}, δ, p.p.m.): $8.014(d, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.593(d, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.462(t$, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.351(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.325(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.191$ $(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.191(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.102(d, 1 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $6.947(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.936(d, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.688(d, 1 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): 159.17, 148.79, $143.59,141.89,140.89,137.55,131.90,131.78,131.74,128.41,127.86$, 1226.46, 125.04, 123.57, 121.22, 120.08, 119.56, 119.53, 111.76, 55.78; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \lambda_{\text {max }}, \log \varepsilon, \mathrm{nm}\right): 406,1707 ; \mathrm{MS}$: calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}: M^{+}: 285$, measured: 285.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO} \\
& M_{r}=285.33 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.0517(5) \AA \\
& b=9.3304(4) \AA \\
& c=15.6876(9) \AA \\
& \beta=116.832(1)^{\circ} \\
& V=1443.49(12) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.313 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12300 reflections
$\theta=2.2-31.7^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Block, orange
$0.6 \times 0.6 \times 0.5 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.951, T_{\text {max }}=0.960$
12925 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.139$
$S=1.09$
3578 reflections
200 parameters
H -atom parameters constrained

3578 independent reflections
3381 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-14 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0802 P)^{2}\right. \\
& \quad+0.4989 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.45 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

H atoms were included in calculated positions, with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$, and were included in the refinement in the ridingmodel approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1997-1999); cell refinement: SAINT-Plus (Bruker, 1997-1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was funded in part by an NIH Area grant (No. 1 R15 AI057408-01), as well as CCSU-AAUP research grants and CCSU Faculty Student Research Grants. MZ and JU were supported by NSF grant No. 0111511, and the diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP-491 and by YSU.

References

Boezio, A. A., Solberghe, G., Lauzon, C. \& Charette, A. B. (2003). J. Org. Chem. 68, 3241-3245.
Bruker (1997-1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Chi, Y., Zhou, Y.-G. \& Zang, X. (2003). J. Org. Chem. 68, 4120-4122.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gao, Y. \& Sato, F. (1995). J. Org. Chem. 60, 8136-8137.
Glagovich, N., Reed, E., Crundwell, G., Updergraff, J. B. III, Zeller, M. \& Hunter, A. D. (2004a). Acta Cryst. E60, o623-0625.
Glagovich, N. M., Reed, E. M., Crundwell, G., Updergraff, J. B. III, Zeller, M. \& Hunter, A. D. (2004b). Acta Cryst. E60, o1269-o1270.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Yang, T.-K., Chen, R.-Y., Lee, D.-S., Peng, W.-S., Jiang, Y.-Z., Mi, A.-O. \& Jongt, T.-T. (1994). J. Org. Chem. 59, 914-921.

[^0]: (C) 2004 International Union of Crystallography

 Printed in Great Britain - all rights reserved

